Accuracy Assessment of Lidar-derived Digital Elevation Models
نویسنده
چکیده
Despite the relatively high cost of airborne lidar-derived digital elevation models (DEMs), such products are usually presented without a satisfactory associated estimate of accuracy. For the most part, DEM accuracy estimates are typically provided by comparing lidar heights against a finite sample of check point coordinates from an independent source of higher accuracy, supposing a normal distribution of the derived height differences or errors. This paper proposes a new methodology to assess the vertical accuracy of lidar DEMs using confidence intervals constructed from a finite sample of errors computed at check points. A non-parametric approach has been tested where no particular error distribution is assumed, making the proposed methodology especially applicable to non-normal error distributions of the type usually found in DEMs derived from lidar. The performance of the proposed model was experimentally validated using Monte Carlo simulation on 18 vertical error datasets. Fifteen of these data-sets were computed from original lidar data provided by the International Society for Photogrammetry and Remote Sensing Working Group III/3, using their respective filtered reference data as ground truth. The three remaining data-sets were provided by the Natural Environment Research Council’s Airborne Research and Survey Facility lidar system, together with check points acquired using high precision kinematic GPS. The results proved promising, the proposed models reproducing the statistical behaviour of vertical errors of lidar using a favourable number of check points, even in the cases of data-sets with non-normally distributed residuals. This research can therefore be considered as a potentially important step towards improving the quality control of lidar-derived DEMs.
منابع مشابه
Forest Roads Mapped Using LiDAR in Steep Forested Terrain
LiDAR-derived digital elevation models can reveal road networks located beneath dense forest canopy. This study tests the accuracy of forest road characteristics mapped using LiDAR in the Santa Cruz Mountains, CA. The position, gradient, and total length of a forest haul road were accurately extracted using a 1 m DEM. In comparison to a field-surveyed centerline, the LiDAR-derived road exhibite...
متن کاملAn evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs
An assessment of four different remote sensing based methods for deriving digital elevation models (DEMs) was conducted in a floodprone watershed in North Carolina. New airborne LIDAR (light detecting and ranging) and IFSAR (interferometric synthetic aperture radar (SAR)) data were collected and corresponding DEMs created. These new sources were compared to two methods: Gestalt Photomapper (GPM...
متن کاملAccuracy Assessment of LiDAR-Derived Digital Elevation Models Based on Approximation Theory
The cumulative error at a point in a LiDAR-derived DEM consists of three components: propagated LiDAR-sensor error, propagated ground error, and interpolation error. To combine these error components so as to assess the vertical accuracy of a LiDAR-derived DEM, statistical methods based on the error propagation theory are often used. Due to the existence of systematic error, statistical methods...
متن کاملAnalysis of Lidar Elevation Data for Improved Identification and Delineation of Lands Vulnerable to Sea-Level Rise
The importance of sea-level rise in shaping coastal landscapes is well recognized within the earth science community, but as with many natural hazards, communicating the risks associated with sea-level rise remains a challenge. Topography is a key parameter that influences many of the processes involved in coastal change, and thus, up-to-date, high-resolution, high-accuracy elevation data are r...
متن کاملAccuracy of Airborne Lidar-Derived Elevation: Empirical Assessment and Error Budget
As part of a countywide large-scale mapping effort for Richland County, South Carolina, an accuracy assessment of a recently acquired lidar-derived data set was conducted. Airborne lidar (2-m nominal posting) was collected at a flying height of 1207 meters above ground level (AGL) using an Optech ALTM (Airborne Laser Terrain Mapper) 1210 system. Unique to this study are the reference point elev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008